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In this brief introduction to the topic there are sixteen points that we would like to make
in reference to the problems of dynamic scene understanding and 3-D model extraction.
We will first list these sixteen points, then take about a minute and a half to explain each
one separately.

1. Machine vision systems may achieve human-like perception most efficiently
through progressive emulation of natural mechanisms of visual-motor
control.

2. Motion is fundamental to all forms of natural perception.

3. Independent motion marks new targets, while induced motion provides
information about the geometry of a static environment.

4. Target behavior is apparent primarily through an analysis of motion.

5. The geometries of natural vision systems facilitate processing of species
relevant information.

6. Motion information can transform pattern information to achieve perceptual
constancies.

7. Visual perception is an active process.

8. Reflex saccadic eye movements sample the environment.

9. Expectations drive search patterns over familiar targets.

10. Recognition is the verification of a prediction.

11. Acquisition and use of information are inseparable processes in natural
intelligence.

12. Animals learn environmental correlations to satisfy internal needs.



13. Machines can learn similarly if needs are appropriately defined and tested.

14. Machine learning, following biological precedent, requires a reflex base that
responds to both internal and external events, sensor preprocessing for
feature definitions, and association matrices between abstract
representations of information from the sensor domains.

15. Neural networks, whether biological or artificial, self organize and select
idiosyncratically relevant features for discrimination and prediction of
environmental contingencies.

16. Recommendations and Summary of Machine vision at NRaD

Now for some explanaton:

1) Machine vision systems should emulate natural mechanisms.

How to approach human-like perception without human liabilities?

What are the human liabilities?

Unreliable - errors of omission, errors of commission,
Unsuitable - slow, capacity limited
Expensive - costs of training and maintenance,
Fragile - costs of protection and repair.

What are the human assets?

Adaptable - on-the-job learning,
Available - many candidates for the job.

Why emulate biological mechanisms?

1.  Natural mechanisms have proven successful and efficient.

2.  A great deal is known of how they work.

3.  Early fidelity to natural mechanisms may facilitate construction
of higher order processes that depend upon them, and of which we
yet are uncertain.

Advanced information processing systems such as man are phylogenetic consequences of
simpler designs. Little is thrown away in the design of more advanced systems, rather,
new capabilities are built up by the addition of neural controllers that interact with earlier



existing controllers. Figure 1 lists the relative complexity of the phylum, the evident
nervous system advance at that stage, and the consequential new capabilities afforded.

Figure 1.

If we want to achieve the capabilities of man in an artificial system without the his/her
limitations, we may do so by judicious emulation of the computational processes that
subserve his intelligence.

2) Motion Analysis is fundamental

Motion dominates the processing of simpler organisms. In man there are specialized
receptors for motion in cutaneous touch - the Meissner and Pacinian corpuscles, while
other receptors - the Merkel and Ruffini - code static pressure (Vallbo, 1994); for the
movement or change in stretch and tension of muscles there are the muscle spindle
organs and the Golgi tendon organs, while and joint angle sensors code static position; in
vision the rod photoreceptors and the magnocellular pathway are primarily involved in
the processing of optic flow to visual motion, while the cone photoreceptors and the



parvocellular pathway are primarily concerned with the processing of pattern and color
(van Essen and Maunsell, 1983). The functional difference between static and transient
detectors is adaptation. Motion detectors rapidly adapt to conditions. (Muscle spindles
adapt through active mechanisms involving the Gamma motor control of the intrafusal
motor fibers.)

Motion is not something that was added to scene analysis, but it is what nature started
with. Instead, pattern analysis was an addition to motion analysis.

Figure 2 is a mediolateral view of the human brain. All of the parts of the brain that can
be identified in simpler species are located in progressively more central and more
posterior regions.

Figure 2.

3) Induced motion provides information about the geometry of a static
environment.

Animals exploit their own ability to move by traversing the environment - creating local
changes in pattern on their sensor fields.



Figure 3.

A moving sensor induces an optic flow from stationary objects that depends on the
objects' 3-D locations with respect to the direction of travel (see Figure 3 for examples).
The ability to understand action in three dimensions based upon non-stereo motion, size,
perspective, or occlusion cues is evident in ordinary cinematography. Depth is commonly
dramatized by filming with the camera in motion.

Subconscious processes monitor this induced motion for its use in localization of non
target objects required in reflex obstacle avoidance and path planning.

Most advanced vertebrates have the ability to maintain a visual fix on a target, whether
the target is moving or not. The fixation is maintained through saccadic eye movements
and smooth pursuit eye movements. When the fixating animal is also moving, additional
information about the geometry of the environment is gained by the induced optic flow.
This information is approximated in Figure 4.



Figure 4.

Independent motion marks new targets

Animals use target motion as the principal cue for visual target acquisition. The superior
colliculus, a midbrain nucleus responsible for selecting new visual targets, receives input
from the motion detectors of the retina as well as from the cerebral cortex. Motion is a
nearly irresistible factor in reflex control of visual attention. We are compelled to look at
a target that moves uniquely, and while we may choose to look away, our attention is
drawn back to it if it continues to exhibit erratic motion. Looking at a target means
moving our eyes, head and body through saccades and smooth pursuit movements in the
direction of the target so that the image of the target falls on the center of our retina
(orienting reflex).

Motion segmentation mechanisms force attention to sources of unique motion (generally
due to animate targets) and suppress conscious awareness of the consistent background
motion (generally due to movements of the sensor).

Visual motion segmentation mechanisms permit target acquisition, tracking, and trailing.



Figure 5 shows a visually sensing robot acquiring, tracking, and trailing a walking human
in a complex visual environment, using only visual motion segmentation for input.

Figure 5.

4) Motion reveals target behavior

When the target is in motion, the analysis of target motion is fundamental to the
assessment of its behavior.

This is obvious. What it implies however is that we need mechanisms first to analyze or
extract features from the motion flow, and second to integrate those features into patterns
of motion (trajectories) that can evoke an appropriate response.

Intention is exposed in action.

5) The geometry of the vision system facilitates processing.

Animals generally have fixed sensor geometries, such as the distribution of receptors in
the retina and the projection of their output onto the visual cortex.



In advanced vertebrates that use eye movements to scan for detailed information, the
sensor geometry is modified to concentrate processing on the target region. This is the
fovea of the retina. Peripheral input is compressed and used primarily for detection of
new targets, based again on motion.

The primate visual system undergoes an approximate log-polar transformation from the
photo receptors to the visual cortex. This transformation accomplishes data compression,
committing a large part of the cortex to the processing of the central visual field (about 10
degrees visual angle), and a small portion to processing of the peripheral visual field
(about 150 degrees on the horizontal). In addition, the transformation facilitates certain
analyses of motion that are generally more relevant to an active vision system. For
example, auto motion in the direction of the optical axis results in parallel flows on the
computational plane.

Figure 6 shows the visual receptive fields, and the log-polar projection of the visual
sensor employed by the robot in Figure 5.

Figure 6.

The processing of sensor and motor information is closely related geometrically in the
brain. The activation of a sensor field is likely to be associated with the activation of a
motor field that controls muscles that further stimulates sensors projection to its



associated field. An example of this close correspondence is shown in Figure 7 in a
sagital section of the human brain.

Figure 7.

6) Motion information can transform pattern information to achieve perceptual
constancies.

Motion can also be used to transform extracted features to maintain alignment of
predictions with subsequent observations, greatly reducing computational workload in



object recognition. While motion and pattern are known to be processed in parallel
streams through the cortex, the two streams interact at several levels. Figure 8, from
DeYoe and VanEssen (1988), summarizes the evidence.

The nervous system generally ignores constant input, whether or pattern or motion.
Elementary pattern features, such as oriented lines, are most provocative when moving
orthogonal to their preferred orientation.

1.  Stationary features are ignored.

2.  Oriented lines evoke stronger responses when moving
orthogonal to their preferred orientation.

3.  Secondary and tertiary cortex contain higher percentages of cells that are direction
specific.

4.  Location specificity decreases while direction specificity increases with distance from
primary sensory cortex.

Figure 8.



In the absence of visual input, the process can free run as the transformed features create
new motion that leads to new transformations. What happens during a dream? The
images move and often undergo unusual transformations. During a dream, eye
movements occur (REM sleep) but are poorly organized. The reconstruction of images is
a dynamic process, both creating motion and depending upon motion.

1.  Dream images move on their own.

2.  Dream images transform rationally and then decompose.

3.  Vivid dreams are associated with poorly organized eye movements (REM sleep).

4.  The reconstruction of images in a dream may involve the motion transformation of
pattern features and the perception of new motion as a consequence. The process could
then free-run.

5.  Visual input during the waking state can justify motion-pattern interactions (reality
testing).

7) Visual perception is an active process.

Also obvious.

The purpose of the central nervous system is not to dream, but to act. This perspective
has been available in the neurobiological community at least since the time of Tolman
(1932) and is frequently reiterated (Arbib, 1972;  Pribram and Carlton, 1984; Roitblat,
1988, 1991; Varela, 1979). Its reciprocal, that the purpose of action is to perceive, is also
voiced (Powers, 1973; Bandopadhay et al.,1986; Whitehead and Ballard,1990; Burt,
1988).

Experience allows discrimination.

Active perception is the application of control strategies to data acquisition based on the
current state of data  interpretation and the goal or task of the process (Bajcsy, 1988).
Active perception occurs during the processes of autonomous sensor-effector control.
Active perception is the execution of some behavior that results in the increased
probability of encountering a specific stimulus. At a higher level, active perception
attempts to satisfy a need for information. It can accomplish this by changing the relative
perspective of the organism to its environment. Active perception is a means first to
diversify contact with the environment and second to reduce distraction, improve the
signal to noise ratio and reduce the computational requirements. Aloimonos et al. (1987)
point out that problems that are ill-posed and nonlinear for a passive observer are well
posed and linear for an active observer.



Uncertainty in the environment is the reason why active perception is required. An
uncertain observer is evidenced by random behavior. Non-random behavior in a noisy
environment is evidence for the success of active perception.

1.  The real world contains uncertainty.

2.  An uncertain agent acts randomly.

3.  Non-random behavior is evidence for active perception.

4.  Active perception is the application of experience to data collection.

5.  Active perception increases the probability of finding a target.

6.  Active perception reduces noise and computational requirements.

8) Reflex saccadic eye movements sample the environment.

Once a global search has acquired a target, a more detailed search performed by scanning
mechanisms permits a logical sampling of target attributes, whether or not the target is
itself moving. Target attributes compete for attention as do multiple targets observed
from a distance. Figure 9 shows such a scan path produced by a human observer. The
darkest blotches are the saccade target locations where the observer's eyes rested for
approximately 0.5 sec prior to moving ballistically on to the next location.

Experience is gained through observing the order in the environment (correlations)
produced during reflex reorientations to salient features of an object.

Figure 9.



Smooth pursuit eye movement temporarily maintain the target on the high resolution
fovea but are frequently interrupted by small saccades that continue to actively sample
the geography of target attributes. The reader may easily verify this for himself by
observing a moving automobile at 100 yards. The eyes will smoothly track the
automobile, but will also jump from location to location on the body of the automobile to
identify salient features.

9) Expectations drive search patterns over familiar targets.

After a period of observation when data collection is controlled primarily by reflex
saccades, the vision system begins to anticipate the next saccade and preempts the reflex.
Learned scan paths are the active processes of perception.

Rizzo et al. (1987) studied the fixation patterns of two patients with impaired facial
recognition and learning and found an increase in the randomness of the scan patterns
compared to controls, indicating that the cortex was failing to direct the search for
relevant information with a degree of control that exceeded the attractive potential of the
stimulus features.

Figure 10



Yarbus (1967) demonstrated the sensitivity of patterns of eye movements to the cognitive
requirements of a visual search task. The regions of an image that were most often visited
as a saccade target contained information relevant to the task. Without explicit task
requirements, individuals had idiosyncratic scanpaths (Figure 10) suggesting that the
sequence of saccades were determined not solely by the stimulus features, but by an
interaction of stimulus features and an agenda brought to the task by the individual, that
is, the individual demonstrated some expectations about the image to be viewed. Yarbus
expressed this finding as "...people who think differently...see differently" (Yarbus, 1967,
p. 211).

1.  Experience allows anticipation of features that can interact with the target features and
drive the scan path.

2.  Learned scan paths are an active process of perception.

3.  Brain damaged patients with poor face recognition have random scan paths.

4.  Cognitive requirements (expectations) can influence a scan path.

10) Recognition is the verification of a prediction.

The verification of a prediction is the amplification of the current input that matches the
reafferent activity, this process is similar to template matching or adaptive resonance
theory of Carpenter and Grossberg (1987). An output results from an amplified input
pattern as associated motor fields are recruited.

Recognition is a phase transition that changes the dynamic state of the system. It is not a
point process or even a limit cycle, which are both maladaptive and incompatible with
survival. The phase transition places the system in a new behavioral context, from which
responses are deemed correct or incorrect by other observers.

In a study of scan paths and perception of the young woman/old woman ambiguous
figure, Gale and Findlay (1983) found that fixation patterns correlated with the
perception of the figure. The perception of an old woman (Figure 11) was accompanied
by saccades that collected data on the mouth and nose of the figure (a vertical sequence
of data acquisition) while the perception of a young woman was accompanied by
saccades that collected data on the eye lash and ear (a horizontal data acquisition that
missed the critical clues of the old woman in the figure).

1.  Recognition builds from the accumulation of data that match expectations.

2.  All high level brain states are normally transient.

3.  Recognition may undergo a phase transition (hysteresis may be involved) after
encountering data that mismatch the current bias.



2.  The phase transition places the system in a different state with a different bias and
different expectations.

Figure 11.

11) Acquisition and use of information are inseparable processes.

In natural vision systems, the acquisition and use of information are not separable
processes. Normally, irrelevant objects are ignored or quickly forgotten. Quite abstract
two dimensional designs can gain significance for even some invertebrates if the design
is correlated with the satisfaction of some vital need of the animal.

12) Animals learn environmental correlations to satisfy internal needs.

Animals learn not to please us, but to satisfy some internally sensed deficiency, such as
hunger, thirst, restraint, sex, etc. The deficiency triggers an increase in neural activity
(arousal) which is reduced in the course of satisfaction. This is diagramed in Figure 12.

1.  Classical or Pavlovian conditioning is the model.

2.  An internal deficiency is sensed such as hunger, thirst, cold, or pain;

3.  Arousal is increased followed by activity;

4.  The object of satisfaction is found followed by decreased arousal and activity.

5.  Environmental features present during the change in arousal are associated with the
sensed event that changed the arousal.



6.  Thus we experience and anticipate rewards and punishments.

Figure 12

13) Machines can learn similarly if needs are appropriately defined and tested.

While the expected major benefit of using a machine vision system is freedom from the
requirement to satisfy vital needs, the mechanisms involved in the acquisition and use of
new information by a natural vision system are relevant to the development of analogous
processes in an artificial vision system.

Motivation is generally ignored in machine learning. The learning process is controlled
by an operator who determines when behavior is required, what behavior is required and
which events are relevant for recall. In this scenario, the machine is not learning, instead
the program parameters are being adjusted "on line". To approximate natural learning, a
criterion for behavior must be sensed by the machine. Energy resources have been used
(). When energy reserves drop, the activity of the machine is increased, when energy
reserves are restored, the activity is reduced. Learning is accomplished in this protocol by
correlating the motor output and sensory input present during the changes in activity and
energy reserves. Events that lead to increases in activity (due to low energy reserves)
are to be avoided, while events that lead to decreases in activity (due to restored energy
reserves) are to be approached. This mechanism must allow for hysteresis, for activity
itself will decrease reserves.



In every adaptive system, natural or synthetic, there are one or more reasons to change its
structure and its input-output transfer function. In a supervised system, these reasons are
exogenous. In an autonomous system, the reasons are endogenous. In a supervised
autonomous system, the exogenous reasons are apparent to the supervisor, but they are
effective only if they manipulate endogenous factors.

The appropriate selection of adaptation criteria in large part determines the success of
adaptation. The mediation of the adaptation criteria is a biphasic process. Active network
connections are strengthened when the output of the system contributes to the restoration
of the criterion set-point values, and are weakened when it differs from those required
values.

The experience of an artificial vision system with the types of information with which it
must function, mediated by exogenous or endogenous reasons to change, allows the
system to self-organize and determine, on its own, the relevant features, both in space and
in time, that can be used to discriminate and respond appropriately to dynamic visual
input.

1.  Endogenous Motivation: energy reserves (useful in fielded systems), activity levels
(optimize data collection per computational speed).

2.  Exogenous Motivation: apply by manipulating one of the endogenous reflexes.

3.  Strengthen associations between sensor fields when homeostatic set-points are
approached. Weaken associations upon withdrawal from set-points.

4.  The analogue of the arousal parameter may be the sensitivity of the perceptual system
to phase transition.

5.  Frequent changes in state with high arousal  discourage discrimination learning.

14) Machine learning, following biological precedent, requires a reflex base,
sensor preprocessing for feature definitions, abstract association matrices
between sensor domains.

All behavior is built upon simple reflexes. One such reflex in shown in Figure 13. All
complex behavior is achieved through the modulation of basic reflexes as shown in
Figure 14.

Motivation is the result of a reflex increase in activity due to an interoceptor signalling
some deficiency. The reflex base for behavior has several advantages: it provides self
preserving behavioral defaults, it scales learning to the physical limits of the system, it
keeps learning relevant, it connects elementary features with elementary motor responses.



Figure 13. Figure 14.

Sensor preprocessing is a means to analyze input. Elementary features are made available
for coding events. Multi-layer neural networks can learn discriminable coding, but at
great computation cost. The natural neural system applies plasticity judiciously and not
universally. No evidence of long tern plasticity in the spinal cord. Most functions of the
brain stem, including the hypothalamus are species specific and innate. The organization
of feature analyzers in primary cortex can be impaired with impoverished environments,
but normal exposure yields similar results between individuals of a species. It is in
the multi-sensory association cortex that neural responses cannot be predicted within a
species. "Grandmother" cells apparently do not exist, rather the perception of one's
grandmother is a spatial-temporal pattern of activity in larger numbers of cooperating
neurons, resulting in the sequencing of multiple muscle groups. No single location in the
nervous system contains a specific idea, or makes unilaterally a single decision. The
natural neural network is a cooperative venture. Figure 15 shows an example of
population coding.

Adaptation is correlated with visual capability in nature, and where we want to improve
capability in our artificial systems, we should explore the mechanisms of adaptation and
incorporate these into our artificial systems.

The appropriate motor output of an adaptive polymodal sensor association field follows
from the dynamic reconstructions of the elementary sensory fields that accompanied the
correct or successful behaviors.

1.  Reflex base.

2.  Multiple sensor systems with feature extraction and recomposition hierarchy.



3.  Association matrices between high level features of different sensor modalities.

4.  Topographical mapping of sensor features and motor mechanisms - for scan paths,
voice production, teletype, etc.

Figure 15.

15) Neural networks, whether biological or artificial, self organize and select
idiosyncratically relevant features for discrimination and
prediction of environmental contingencies.

As designers of an artificial visual system, we can specify the decomposition of an image
but this does not guarantee that the resulting features will be present in the target and
obvious to the machine vision system. We could find that it takes less work to allow the
machine itself to determine what is relevant. It could do so by simply selecting the
features that make it through its filters at the time the critical decisions are required.



In the process of self-organizing to regularities in the environment, desired responses to
classes of environmental conditions become probable. Such an increase in the probability
in the scan path of a machine vision system with learning is shown in Figure 16.

1.  It is difficult for the designer to anticipate what is relevant for a learning system.

2.  Natural and artificial learning systems discover relevant features and correlations from
the order in the environment as filtered by the systems experience based predispositions.

Figure 16.



16) Recommendations and Summary of Progress in machine vision at NRaD

The approach we advocate follows biological precedent and incorporates in its functional
design low level deterministic specific responses to unspecific stimulus conditions
(reflexes), monitored by accessory channels containing specific organizations for input
pre-processing  and output post-processing coupled by a large loosely differentiated
matrix of adaptive processing elements, analogous to neurons or interneurons. The
adaptation rules should be based on criteria relevant to the survival of the machine. The
gross architecture of the artificial visual processing stages that we have implemented is
shown in Figure 17. This architecture was used to learn the scan paths of Figure 16.
Long-term adaptations (learning) were permitted only in the association cortex layer.

A large literature on both natural and artificial learning systems support this architecture
and adaptation mechanism.

1.  Emulate nature.

2.  Include neurobiologists in design teams along with computer scientists.

3.  Avoid historical biases.

Figure 17.



We have available to date algorithms that emulate natural visual information processing.
These algorithms perform 1) visual sensor to processing layer mapping that accomplishes
data compression using a log-polar transformation (Blackburn, 1993a), 2) visual motion
analysis of local activity in the log-polar domain (Blackburn and Nguyen, 1994b), 3)
target acquisition and localization based on segmented motion (Blackburn and Nguyen,
1995), 4) feature analysis and re-synthesis by a hierarchical organization incorporating
motion mediated transformations (Blackburn, 1993b), 5) adaptive associations of
invariant spatio-temporal features and search behaviors (Blackburn, 1992), 6) cross
modal adaptive sensor mapping as in Figure 18 (Blackburn and Nguyen, 1994b). The
degree of maturity of these processes is inversely proportional to their order in the list.

Figure 18.
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